Actually we claim your understanding of the universe violates the second law.
If the universe tends towards entropy, how the the order and complexity of life arise?
------------
Amidst the currently raging controversy centering on creation and evolution as the only two possible explanations for the Universe and all life in that Universe, a bitter battle is being waged in regard to the meaning and significance of two of the most fundamental laws known to science—the first and second laws of thermodynamics. For years creationists have presented (in articles, books, lectures, and debates) evidences against the General Theory of Evolution based on those two laws. During much of that time evolutionists, with rare exceptions, simply ignored creationists’ arguments. In the few instances where evolutionists bothered to acknowledge the arguments based on thermodynamics, they generally did so only in cursory fashion, most often by simply dismissing creationists’ arguments as efforts by those who were “uninformed” or “misguided.”
But all of that has changed—as is evident from Mr. Rennie’s comments. Evolutionists have heard the “call to battle,” and are answering that call. Now both creationists and evolutionists are actively engaged in the most serious kinds of efforts to portray to the general public the relationship that exists between the laws of thermodynamics and their respective origin models. And for good reason. The stakes involved are enormous! If creationists are correct in their statements of the laws of thermodynamics, and in their assessments and interpretations based on those laws, evolution is immediately and automatically ruled out by what those in the scientific community readily acknowledge as “the most secure generalizations known to science”—the laws of thermodynamics. Whereas in the past, evolutionists frequently ignored arguments based on the laws of thermodynamics, now those same evolutionists are reacting with a feverish pitch to creationists’ presentations based on those laws. For that reason, and because of the tremendous importance that the laws of thermodynamics do have to the creation/evolution issue, we believe that an examination of these matters is warranted.
Our English word “thermodynamics” derives from two Greek words, therme, meaning “heat,” and dynamis, meaning “power.” Thus thermodynamics is the study of heat power. Historically, the subject of thermodynamics arose from the study of heat engines. Currently, the subject of thermodynamics is much broader in scope, and involves the movement of energy and the conversion of one form of energy into another. Thermodynamics, as a field of study, is important for several reasons, not the least of which is that it acts as a “unifying” factor for all of the exact sciences, since energy is required for all natural processes (see Crawford, 1963, p. 1). It is this very fact—that all natural processes require energy—that makes thermodynamics of special interest in the creation/evolution controversy. Consider, for example, Sir Julian Huxley’s now-famous definition of evolution:
Evolution in the extended sense can be defined as a directional and essentially irreversible process occurring in time, which in its course gives rise to an increase of variety and an increasingly high level of organization in its products. Our present knowledge indeed forces us to the view that the whole of reality is evolution—a single process of self-transformation (1955, p. 278).
Sidney Fox, who pioneered much of the work regarding the “origin of life” in evolutionary scenarios, has noted that “evolution, however, has put together the smallest components; it has proceeded from the simple to the complex” (1971, 49[50]:46).
Obviously evolution involves “transformation” or “putting together.” And, such natural transformations or “putting together” processes require energy. In fact, a process of evolution (like the one suggested by Huxley and Fox) would require tremendous quantities of energy, and many energy transformations from one form to another. Simply stated, then, our point is this: the process of evolution requires energy in various forms, and thermodynamics is the study of energy movement and transformation. Thus, the two fields bear a clear relationship. Scientific laws that govern thermodynamics also must govern evolution. Creationists and evolutionists alike generally acknowledge this fact. Creationist writers are quick to express agreement on this point (see Williams, 1981, p. 10). Most evolutionists agree that, in principle, thermodynamics does have a relationship to evolution, but some are quick to claim that this relationship may not be quite as distinct as creationists suggest. Willard Young stated: “In fact, thermodynamics is involved in every process of energy transformation. For this reason even biology is governed, in part, by the fundamental principles of thermodynamics, though not in the manner the Creationists would have us believe” (1985, p. 164).
The point, then, is clear. The laws of thermodynamics do regulate all energy-related processes. Evolution (even biological evolution) is dependent upon such energy-related processes. Thus, the laws of thermodynamics must regulate evolution. The question that obviously arises is two-fold: (1) what do the laws of thermodynamics say; and (2) what regulatory processes or restrictions are imposed on evolution as a result of the laws of thermodynamics?
Robert Mayer (1814-1878) was the first scientist to suggest the general principle that ultimately would become the first law of thermodynamics. Mayer observed: “I therefore hope that I may reckon on the reader’s assent when I lay down as an axiomatic truth that, just as in the case of matter, so also in the case of force [the then-current term for energy—BT/BH], only a transformation but never a creation takes place” (as quoted in King, 1962, p. 5). Today we often refer to the first law as the “law of conservation of energy (and/or mass).” Put into simple terms, the first law says that, naturally speaking, neither energy nor matter can be created or destroyed, but can only be converted from one form to another. The total amount of energy in the Universe remains constant. Scientists freely admit that, as Young put it, “the principle of the conservation of energy is considered to be the single most important and fundamental ‘law of nature’ known to science, and is one of the most firmly established. Endless studies and experiments have confirmed its validity over and over again under a multitude of different conditions” (1985, p. 165).
Although the first law of thermodynamics has serious implications for any evolution-based scenario, since Mr. Rennie mentioned in his article in Scientific American only the second law, we will restrict our comments here to that law. [For an in-depth discussion of the implications of the laws of thermodynamics in the creation/evolution controversy, see Thompson and Major, 1988.]
As men began to work with heat engines in the nineteenth century, the second law of thermodynamics came to be formulated. In 1824, Sadi Carnot (1796-1832), a French physicist, correctly noted that every heat engine requires a hot body (or source of heat) and a cold body (or sink), and that as the engine operates, heat passes from the hot body to the cold body. In such an engine, only a portion of the heat from the source can be utilized to perform useful work. The remainder is wasted. As a result of Carnot’s discovery, two scientists of his generation independently stated what came to be known as the second law of thermodynamics. German scientist Rudolph Clausius (1822-1888), and Irish scientist Lord Kelvin (William Thomson, 1824-1907), introduced concepts in 1850 and 1851, respectively, which ultimately became known as the second law. In 1852, Kelvin published a paper in which he delineated what was to become one of the most secure generalizations in all of science. In his treatise titled “On a Universal Tendency in Nature to the Dissipation of Mechanical Energy,” he set forth three propositions in which he summarized the concept that although energy is conserved (the first law), it is becoming less and less available for use (the second law). Energy is, to use Kelvin’s own words, “irrevocably lost to man and therefore ‘wasted,’ though not annihilated” (as quoted in Thompson, 1910, pp. 288-291). Clausius enunciated another form of the second law in 1854 when he stated that “heat cannot of itself, without the intervention of any external agency, pass from a colder to a hotter body” (as quoted in Glasstone, 1946, p. 217). Clausius also defined a quantity known as entropy—the energy per degree of absolute temperature that cannot be recovered as work. He thus was able to give succinct definitions of the first and second laws of thermodynamics in this form: according to the first law, the total amount of energy in nature is constant; according to the second law, the total amount of entropy in nature is increasing. Entropy (from two Greek terms meaning “to turn in on oneself ”) thus came to represent a measure of the lost usefulness (i.e., randomness, disorderliness) of the system.
Basically the second law says three things: (a) systems will tend toward the most probable state; (b) systems will tend toward the most random state; and (c) systems will increase in entropy, where entropy is a measure of the unavailability of energy to do useful work (see Wysong, 1976, p. 241). In “open” systems, energy may be lost to or gained from outside sources (i.e., the system is not self-contained). In “closed” systems, no outside energy or other “interference” is allowed (i.e., the system is self-contained).
Sir Arthur Eddington, the eminent British astronomer of the past generation, referred to the second la